- -
- \x\- -
enerocksai.github.io/rrisc

AEF » \
2 i A . #

e ‘-\ AN
“ - L

\' .
% ~ . . » B
\\ R - 2 g
A :\\. ™ - \‘\- \

- . = By N ; ’f‘
2 v T 2 :
Sy 4 e 3
& <y
- L 4 - : a ‘.‘:/_‘l
-}Q‘ £ . 7 f s

| o #\\'

- X

-

-

—

b}
RS
‘\

-

y —

s > -

BU_lLDlNG A CPU OVER CHRISTMAS
. ‘—_“"’4—_“;.;: -

' RENE SCHALLNER)
{ \

{

.~ What and why?

WHAT IS A CPU AND WHY WOULD | WANT TO BUILD ONE ANYWAY?

)
\

What is a RRISC CPU and why would | want to build one anyway?

CPU
>a CPU (Central Processing Unit) is a "microprocessor"
> the heart of a computer

CISC, RISC, RRISC

> early - mid 1970s : trend from simple register machines
towards more and more complex architectures: CISC
(Complex Instruction Set Computer)

> |ate 1970s - 1990s: counter trend after critical
observation towards less, and simpler instructions: RISC
(Reduced Instruction Set Computer)

> early 1990s: out of necessity, | come up with: RRISC
(Radically Reduced Instruction Set Computer)

Main Differences RISC -> RRISC
> No ALU (arithmetic logical unit) inside the core of
the CPU
> No stack
> 5 basic instructions, with variations
(addressing modes)
> LD (load from memory)
> ST (store to memory)
>IN (read from port)
> QUT (write to port)
> JMP (jump to address)
> ALL instructions are conditional
(=> Turing complete)
> identical execution time of all instructions

WHY?

> Becausel

> best way to learn is to attempt to build one ._
> from the ground up '

> QOriginal motivations:
> for learning and educating about CPU design
> De-mystifying CPUs

Might it even be relevant?

RISC is back in business!

> ARM (Acorn RISC Machine) cores power billions of smartphones today

> Apple's new ARM based M1 chip

> QOpen RISC-V architecture is aiming to become "the new ARM" - without license fees!

As we will see later, we will implement the CPU using an FPGA chip.

FPGAS are accelerating Artificial Intelligence!
> In the data center:
> Xilinx Versal Adaptive Compute Acceleration Platform, Alevo FPGA boards
> Intel Deep Learning Acceleration, Arria 10 FPGAs -- powering Bing search!
> On the edge: mobile, |0T, self-driving cars, robotics, ...
> FPGAs are parallel "by nature":
> electronic circuits are parallel by nature
> they lend themselves to accelerating parallel algorithms:
> convolutions, matrix multiplications, etc.
> Dedicated silicon is power efficient:
> 38..42W typically in Intel Vision Accelerator design with Arria 10 FPGA versus ~250W in NVIDIA V100 GPU

-~ o - | 4 > “

4 ‘/__’-_"-"J.")

Starting off with some 30

> | designed the
RRISC CPU in
the early
nineties

> |t was
intended to be
implemented
using standard
TTL logic circuits
(LS 74XX)

> | never got
around to
actually build it

More old design stuff

PLATINDE —
s \ 2+ 2P- Clic
7.0
Sk 2‘ L"("'g“
i F L5
i
w(:o«euu-"""“ﬂ" iy A
i l. o o Addngp g Adn |
! T i § =2 ,O(Q\‘\"I':n;s.“-';
..... ;
| Ao,“ P
| f
i
e { FuLs 3z
| Ll A00n
13 vl g S : q,ﬂmb;;diu ‘
= jo TAESO8 migass |
I:\(fnﬁf:\ianl. W
=0 | 2 W o FLLS0Y
o—o © s i
E o ..__‘!___.._-—_-..._____.__.-..___‘_.E._“___L.J___.__..—___.,..-_._.__.4
g ($6:1eaveckid UC NG PLAN
"LB: i = |- A/OUTM« lghﬂ K
e e ARSI Y D 5 5 (G0 DS G J55. - US55 15 B O S O L G
D—|| o—0 o
I:
3| = EL%\TH\I'L S +/\M7U
o «
—2ll== »—-—-’,' -—w—-',"'“' —— ‘ i : PR
- | p-e— =l S@W'f“h[“' f
*—owejlo—o °___..-° f . “i - —4

Back to today: Let's order an FPGA development board

> Intention: upgrading the implementation to
present times technology

> The educational requirement of using discrete
logic ICs for the CPU is outdated

> FPGA ... Field Programmable Logic Array

> FPGAs enable us to load very complex digital
circuits onto a programmable chip

GOAL: Have the CPU run a demo program here --->

Time to learn VHDL

> We order an ebook about FPGAs and VHDL
>VHDL ... VHSIC-HDL
> VHSIC ... Very High Speed Integrated Circuit R

> HDL ... Hardware Description Language FPGA

HARDWARE-
ENTWURF

SCHALTUNGS- UND SYSTEM-DESIGN
MIT VHDL UND C/C++ <

> We spend the rest of the week reading and learning e

DE GRUYTER STUDIUM
OLDENBOURG

> VHDL allows us to describe digital circuits in
a textual representation - a bit like programming

10

-~ o - | 4 > “

4 ‘/__’-_"-"J.")

The plan

There was a rough plan of what needs to be done:

> Setup: Install and familiarize with Xilinx Vivado FPGA design suite for programming the FPGA

> Code: Write the VHDL files of the CPU core components

> Test: Write VHDL "testbenches" to verify the components via simulation

> Repeat code & test for peripheral components:
> RAM
> ALU (arithmetic logical unit)
> Arty development board (LEDs, buttons, switches)
> Create a macro-assembler
> translates RRISC assembly language into binary machine code
> Write assembly code for
> ALU verification
> assembler macro capability examples
> sample code
> the demo program running on the board
> Run: get the code translated and programmed into the FPGA
> Document: create a web page documenting the CPU and project

"2

setup J

r N
code
L% S
' A
test
- S
I ™

create assembler
L J

' ™\

write assembly

\ J
' A
run
- J

(document J
k

17

Software stack change

> Turned out Vivado was bad for my
working style
> slow, resource-hogging Java GUI
> (neo)vim is a far better editor

> Surprise: High quality open source
VHDL software exists!

> (neo)vim is my preferred editor
> ghdl

> compiles VHDL electronic designs
to native code simulations

> gtkwave is a viewer for waveforms
> such as created by ghd|

> Editing, simulating, and testing of VHDL designs

>

right in the terminal, no mouse needed
(viewing waveforms requires a mouse)

13

The core components of the CPU:

> Control Unit

> does all the work
> "the CPU inside the CPU"

> 7 registers: A,B,C,D, E, F, G
> for storing values

> Program Counter

> provides address ("location") of
current instruction in memory

When we implement these, we have a CPU, legally speaking.

Program Counter

CLK
LOAD

A[0:15)

LD_VAL[0:15]

CONTROL UNIT

Port_Data[0:7) Carry flag
Equal flag
Less_than flag
Address[0 : 15]
CONTROL BUS

(Ram_Write, Port Write, ...)

RAM_Data[0:7]
REG BUS
CLK, D[0:7]
PC_Count
PC_Load
PC[0: 15]

PC_LOAD_VALUE[O : 15]

Register A
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register B
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register C
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register D
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register E
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register F
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register G
CLK
DO D1 D2 D3 D4 D5 D6 D7

> from the combination of binary inputs, a
binary outputs is derived '

> the function can be described as a function tabl

> combinatorial logic is built from basic logic gates
> AND, OR, NOT
> they are easily translated into basic electronic
circuits with transistors

Example:
X =({NOT A} AND {NOT B})

OR (A AND {NOT B})
OR (A AND B)

>\When we add é D
==>the circuit b

> A D-flipflop is a 1-bit
>when a CLOCK sigha

> its output becomes the

> the output does not

> this state is kept until t

> *) rising edge: level change fr

> such flipflops are easily built

CLOCK

& >=1

> When we feed back the state

==> we get a finite state machine CurTent state

0

> |n a finite state machine
> the output state is dependent on:
>the condition (input signals A, B)
> the current state
>you can jump from state to state, given a
condition

Example:

= = = 0 0O 0O 0O K=

CLOCK

= CLK

state 0 state 1

combinatorial X
logic

— ~—

A=0, B=1 A=1, B=0
A=1, B=0D A=1.B=1

The C

In the final con
> we first use an
> we use an additi

desired output sign

Separating CPU state anc

CLOCK
Input Signals .. CPU STATE
. . Q
combinatorial combinatorial
logic X o logic Output Signals
«sState»

«outputs»

A minimalistic com

Without any
memory, there's
nothing to
execute.

Hence, for testing
we have to add
some RAM!

A[0:15]

@(A[0..15]
< R_DI[0..7] >
Program Counter
CLK [—
LOAD (o
A[0:15] |— P
LD_VAL[0:15] ||

CONTROL UNIT
Port_Data[0:7) Carry flag
Equal flag
Less_than flag
Address[0 : 15])
CONTROL BUS
(Ram_Write, Port Write, ...)
RAM_Data[0:7]
REG_BUS
CLK, D[0:7]
PC_Count
PC_Load
PC[0:15]

PC_LOAD_VALUE[O : 15]

Register A
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register B
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register C

CLK
DO D1 D2 D3 D4 DS D6 D7

Register D
CLK
DO D1 D2 D3 D4 D5 D6 D7

Register E

CLK
DO D1 D2 D3 D4 DS D6 D7

Register F

CLK
D0 D1 D2 D3 D4 D5 D6 D7

Register G

CLK
DO D1 D2 D3 D4 DS D6 D7

How would we get this onto an FPGA?

Intermezzo: FPGAs
o

> Consist of a 2-dimensional array
Logic Blocks and interconnection

Interconnect Ressources

SOl

110 Plns

> Both CLBs and interconnections are

> CLBs can be programmed to implement v
functions and are connected by program
switch boxes

> Electronic designs are broken down into very s
functions which are then connected

> FPGAs enable us to "load" very complex digital
circuits onto a programmable chip

> FPGAs are also used in prototyping ASICs
(custom chips)

Configurable Logic Blocks

> Consist of a lookup table (LUT) and an optional oo Configurable Logic Block |
flipflop (1-bit memory) |

Output

> LUTs are typically 4..6 bits wide and can implement A A—
any combinatorial logic function B | 5 o
C |
D

Latch

> To enable/disable the flipflop, a multiplexer (MUX)

is used that selects either the LUT output or the o :RST
" CLK

flipflop output i

> During synthesis, the design described by our VHDL code is divided up into CLBs and other FPGA primitives, and
during implementation, actual FPGA ressources are allocated, and the actual bitstream for programming is created

> Both the LUT and the MUX selector input are configured via the bitstream sent to the FPGA when programming,
together with the interconnects, I/0 pin configurations, etc.

21

LA 4

FPGA design flow

> VHDL design entry: writing VH
> Testbench design: writing VHD

> synthesis: with Vivado (FPGA tool)

> implementation: with Vivado

> bitstream generation: with Vivado

Day 7: Breakthrough!!!!

Executing its first instruction!

Eventually, on day 7, we can run the simulation!
First instruction ever executed:
Ida # SCA

> Loads register A
> with constant value SCA
CA (hex) = 202 (dec)

Simulation waveform of relevant signals:

Signals
Time | i
rsts
clks
cpustates FEIE ram_wait_1 fetch_1 ram_wait_2 ram_wait_3 fetch_3 decode ram_wait_1
pc_clocks
2 0A 03

ram_addr[4:0]5:
ram_out[7:015
debug_inrl[7:0]4
debug_inr2[7:0]5
debug_inr3[7:0]5

The macro assembler

include simtest2.inc MAFRDDEF testmacro
> Translates RRISC assembly e cta &2
1db @2

to machine code macro testmacro $CA data ENDMACRO
macro loop forever
MACRODEF loop forever

:data :@label
db &ff jmp @label ;

> Supports ENDMACRO

> Constants (deC/heX) (base) - renemann@penguin ..ub.com/renerocksai/rrisc/asm git:(main) x python asm.py simtest.asm

> |abels Symbol Table:
loop forever : 6069

> include files data : 000cC
> Macros Wlth parameters Generating: simtest.
Generating: simtest.
Generating: simtest.
) Generating: simtest.
2 G L - imtest.
> Generates files: LT
. .]
> .bin: binary S
> .Ist: source listing annotated
. lda # $CA ;
with generated code S
> .sym: symbol table sta data ;
> .bit: textual representation
] .] Ldb data
in binary notation for use -
in VHDL files :label 2
o . jmp label 2 ;
.coe: coefficient file for ;

use in BRAM cells

org ©

:data
db $ff

The ALU - arithmetic logical unit

> Necessary to perform calculations
> NOT part of the CPU itself

> Accessed via 4 external ports:
> Operand A
> QOperand B
> Operation
> Result

Provides 3 flags to the CPU:
> EQ/zero: last result was zero
or comparison result: equal
> GT/carry:
> comparison result:'greater than
> add/sub over/underflowed
> shift operation shifted a bit into it
> LT: comparison result: less than

Operations:
add with carry

bitwise compare
increment by 1
decrement by 1

> subtract with carry

> shift left, MSB into carry
> shift right, LSB into carry
> bitwise rotate left

> bitwise rotate right

> bitwise or

> bitwise and

> bitwise nand

> bitwise xor

>

>

>

ALU

Input A [0:7]
Input B [0:7] NO:lS]“ m
Output [0:7]
LT flag
Zero/EQ flag
Carry/GT flag
CONTROL UNIT
—’ Port_Data[0:7] Carry flag
Equal flag 1:
; Less_than flag
ADDR rl/: Al0..15] Address[0 : 15]
CONTROL BUS
(Ram_Write, Port Write, ...)
R_D[0..7]
P RAM Data[0:7]
REG BUS ‘—
CLK, D[0:7)
Program Counter
cLk M— Pc_Count
LOAD ‘— PC_Load
A[0:15] — | PC[0: 15]
LD_VAL[0:15] |——
PC_LOAD_VALUE[O : 15)

25

Preparing for the real-

> For testing the CPU in the real wor
we need to provide means for
interaction with the board.

> We add ports for LED lights and
buttons.
> The demo should show a running P o
o - CLK
light when a button is pressed < Y ¥ 0NV b por_petefo7) (e DO D1 D2 D3 D4 DS D6 D7
ag
Less_than flag Register B
AJ0..15] Y.
))) RAM CLK ‘ @ :m;)L]:_:s &T}l D2 D3 D4 DS D6 D7
The complete design consists of: WRITE bt e
> The RR|SC CPU core 32 R_DI0.7) P RAM_Data[0:7]) g&%mznamnsmm
D2
. . . . Register D
> The RRISC ALU (arithmetic logical unit) o4 REG BUS g cLK
DS CLK, D[0:7] DO D1 D2 D3 D4 DS D6 D7
> 1 kB of RAM for the demo program b Program Counter e
> 3 ports connected to the Arty board: o K—[700] » o ““‘“2;:::?““’
> 4 LEDs o e tosd &Tnmznsmmmm
- 4 SWltChES Al0:15] P PC[O:15) CLK Reaister @
> 4 buttons o D0 D1 D2 D3 D4 DS D6 D7
PC_LOAD_VALUE[O : 15]

include arty.inc
my_delay = S$0lca

org 8

MACRODEF LEFT

out a, LED PORT

out ALU PORT A

ldb # ALU_ROL

out b, ALU_PORT_INSTR
in a, ALU PORT RESULT
ENDMACRO

MACRODEF RIGHT
LED_PORT
a, ALU_PORT_A
ib # ALU_ROR
out b, ALU PORT_INSTR
in a, ALU PORT RESULT
ENDMACRO

lda # 00
out a, LED PORT

:loop
in b, BTN PORT
out b, ALU_PORT_A
ldb # 381

b,

ALU AND

b, ALU PORT INSTR
in b, ALU PORT RESULT
jmp leop : EQ

lda #5081
macro LEFT
macro DELAY my delay
macro LEFT
macro DELAY my_ delay
macro LEFT
DELAY my_delay
LEFT
DELAY my delay

macro RIGHT

macro RIGHT

macro RIGHT

macro DELAY my delay
mac RIGHT

macro DELAY my delay
macro RIGHT

imp loop

It should work...

The running light demo program

H

include alu.inc

BTN_PORT
SW_PORT
LED_PORT

arty_delay

MACRODEF DELAY
ldf # < @1
lde # > @1

loop delay
=arty delay

ldc # =arty delay
:@loop low
out d, ALU_PORT A
ldg # ALU_DEC
out g, ALU PORT INSTR
in d, ALU_PORT_RESULT
imp @break low : EQ
imp @loop_ low
:@break_low
out c, ALU_PORT_A
in ©, ALU_PORT_RESULT
jmp @break high : EQ
jmp @loop low
:@break high
out T, ALU_PORT_A
in T, ALU_PORT_RESULT
jmp @break param_hi
imp @loop delay
:@break param hi
out e, ALU PORT A
in e, ALU PORT_RESULT
jmp @end : EQ
imp @loop_delay
:@end
ENDMACRO

EQ

1 ee
oo

o —
oL

Day 11: Breakthrough!!!l RRISC CPU in the real world

> After successful
> synthesis
> implementation

> The test program runs!
> On the RRISC CPU!
> 0On the FPGA board!

28

The website

https://renerocksai.github.io/rrisc

rocksal.github.lo/T

./ VHDL implementation of the RRISC CPU

> static HTML website

> authored in Markdown

> HTML generated by the Jekyll
static site generator

> hosted on Github pages

Dowmload [W an GitHub Downlo Dovmioad w an GitHub

64k of RAM
k port add

Basic commands

the following sic commands, that are all

r loading valu int reg

writing the wvalue of a register to the RAM
This is a work in progess. M

as soon as I get to it.
f two group
second group is is comp
of the instruction).

of transact

BUTTON PoRT gt 4 [07]
gt B[07]

Cumpat 7]

Carny T g

29

Reactions on social media

> RRISC is actively being discussed on reddit -;j-.r Rneschalner .—;—-‘r ——
4Bk - - ‘ P8 5o searbeier S
> Hottest topic in r/VHDL on days 12 & 13 - N

It is done! £ My handmade RRISC CPU has manifested in the real world. See a Last Christmas, | gave you my heart _.. This year, to save me from tears... |

demo here: https:/Iinkd.infeCsVQia and read all about it here: developed a RRISC CPU - on my chromebook &. See https:/Inkd.in/eBrr_7G for
(202 1_0 1_03 a n d 202 1_0 1_04) https:/Inkd.in/e4ndV97 #risc #cpudesign #handmade #christmashack

more. It just executed its first instruction! #epudesign #risc #handmade

Executing its first instruction!

r/VHDL
1 ne nline

Do you have any VHDL design you are proud of, or do you need help with some code this
is the place for it.

O
b Reaktionen
About
e 0 {;‘9 e = A8 3
Fo 1 B &, = UG &y

HOT POSTS

& Gefilt mir &) Kommentar () Teilen < Senden

The RRISC CPU running on an FPGA board

gl 669 Ansichten Ihres Beitrags im Feed

© 7- 1 Kemmentar
Reaktionen
: 5:.6 &4 § &=
® 6 \g_;é *,g - ===
o = o o
6_} Gefdlltmir &) Kommentar 3 Teilen < Senden
C@ Share ||. 316 Ansichten |hres Beitrag: 1 Fee:

renerocksai.github.io

30

Takeaways

> FPGAs are fascinating, extremely powerful chips

> Designing electronics in VHDL adds substantially to reusability and testability of electronic circuit designs
> Electronic circuits are parallel by nature

> lend themselves to speeding up algorithms
> Current trend of accelerating Al with FPGAs

> Lightweight, free, commandline beats tens of gigabytes download, heavy GUI all the time

> Creating toy CPUs is fun
> and there's always someone on reddit ready to comment

> Long, uninterrupted stretches of time for concentration and deep work prove to be extremely productive

31

A, -

// W\ [‘\ ') https://renerocksai.github.io/rrisc

- BUILDING A CPU OVER CHRISTMAS

__RENE SCHALLNER

-

